| |
- approx(this, other, eps=0.001)
- Return True if the two numbers (usually floats) are equal within the tolerance eps (default 0.001).
- effHgt2transitDepth(effHgt, radiusPlanet=6371.23, radiusStar=696342.0)
- Return the additional transit depth from a given effective height.
effHgt: effective height spectrum
radiusPlanet: default Earth 6371.23km
radiusStar: default Sun 696342km (https://de.wikipedia.org/wiki/Sonnenradius)
NOTE: according to https://en.wikipedia.org/wiki/Solar_radius 695700km
- float_in_list(value, floatList, eps=0.001)
- Return True if value is contained in a list of float values within the tolerance eps (default 0.001).
- monotone(data)
- Check data for monotonicity and return
+1 increasing monotonically
-1 decreasing monotonically
0 otherwise
- regrid(yValues, newLen, method='L')
- Regrid function values given on an equidistant/uniform grid to a new (usually denser) grid in the same interval.
yValues: the function values to be interpolated with len(yValues)=oldLen
newLen: the number of new function values after interpolation
method: the interpolation method
integers 2, 3, 4 ===> the self-made linear, quadratic or cubic Lagrange
"linear", "quadratic", "cubic", etc. ===> scipy.interp1d
otherwise ===> numpy.interp
RETURNS: yData --- the function values interpolated with len(yData)=newLen
- runningAverage(xy, n=2, splitXY=False)
- Compute running average, i.e. sum up `n` consecutive array elements and divide by `n`.
ARGUMENTS:
----------
xy a rank 1 or rank 2 array
n the number of elements to combine (default 2)
splitXY flag, default False
if True and xy is a rank 2 array, separately return first column (xGrid) and further columns
RETURNS:
--------
a rank 1 or rank 2 array XY (or a rank 1 array xGrid and rank 2 array yValues if splitXY)
the length of the returned array(s) is roughly xy.shape[0]/n
- show_lambda(wavenumbers=[100, 200, 500, 800, 1000, 2000, 2500, 3333, 4000, 5000, 8000, 10000, 12500])
- Write wavelengths [mue] corresponding to x-axis wavenumbers on the top-axis of plot.
- trapez(x, Y, xLow=None, xHigh=None)
- Integral_x[0]^x[-1] y(x) dx with tabulated x,y values (2 arrays) using trapezoid quadrature.
ARGUMENTS:
----------
x a rank 1 array of grid points
Y a rank 1 or rank 2 array
Y can be single or multi-dimensional, i.e. Y.shape=len(x) or Y.shape=[len(x),*]
xLow lower integration limit; default None: start at x[0]
xHigh upper integration limit; default None: start at x[-1]
if xLow or xHigh are not grid points, Lagrange two-point interpolation is used for the first/last interval.
RETURNS:
--------
the integral approximated by 0.5*sum (y[i]+y[i-1]) * (x[i]-x[i-1])
NOTE:
-----
An alternative implementation is given by numpy's `trapz` function;
however, this does not allow to set the limits.
- wien(**kwArgs)
- Wien's displacement law:
for given temperature [K] return wavenumber (or wavelength) of maximum blackbody emission
or
for given wavenumber (or wavelength) return corresponding temperature.
KEYWORD ARGUMENTS:
x: wavenumber or wavelength
T: temperature [K]
xUnit: cm-1 (default) or a wavelength unit
- xTruncate(xGrid, yValues, xLimits)
- Given an array of x grid points and a 'matrix' of y values (with len(xGrid) rows)
delete data outside the Interval defined by xLimits
and return the truncated grid and the corresponding 'matrix'.
- zenithAngle_boa2toa(beta, zToA=120.0, radiusEarth=6371.23, degree=False)
- Return the zenith angle at ToA (or nadir viewing observer) from given angle at BoA.
(beta=0 for vertical uplooking, alpha=pi=90dg for horizontal view)
- zenithAngle_toa2boa(alpha, zToA=120.0, radiusEarth=6371.23, degree=False)
- Return the viewing angle at BoA (or nadir viewing observer) from given zenith angle at ToA.
(alpha=0 for vertical uplooking, alpha=pi=180dg for downlooking observer)
|