

Sentinel-basierte Atmosphärenprodukte zur Bewertung des Einflusses von Verkehrsemissionen auf die Luftqualität in Deutschland (S-VELD)

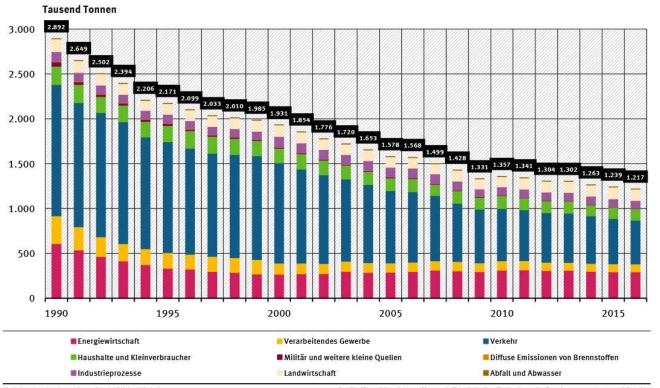
mFUND – Konferenz Berlin, 26 – 27 September 2019

Prof. Thomas Trautmann und das S-VELD Team

Hintergrundsituation

- Luftverschmutzung ist umwelt- und gesundheitsschädlich
 - > ~ 400.000 vorzeitige Todesfälle pro Jahr in der EU
 - ➤ Wichtigste Schadstoffe: Feinstaub und Stickstoffdioxid (NO₂)
 - > EU Luftqualitätsrichtlinie : Grenzwerte werden oft überschritten
- Verkehr gilt als ein wichtiger Verursacher der Luftverschmutzung
 - > Kfz Emissionen: Feinstaub, NO_x, VOCs, CO, Ammoniak, (Ozon)

- ➤ Luftverschmutzung hat nicht nur eine regionale Dimension
- > Europäisches und weltweites Problem



NO_x Emissionen (Umweltbundesamt)

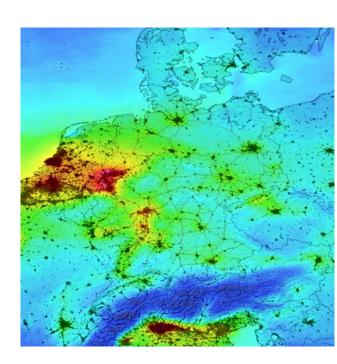
Stickstoffoxid (NO_x, gerechnet als NO₂) -Emissionen nach Quellkategorien

Gesamtemissionen rückläufig

Anteil der Verkehrsemissionen 2016 auf 40% gegenüber 1990 reduziert.

Es gibt deutliche Hinweise, dass die Abschätzungen der Verkehrsemissionen zu niedrig sind

Verkehr: ohne land- und forstwirtschaftlichen Verkehr Haushalte und Kleinverbraucher: mit Militär und weiteren kleinen Quellen (u.a. land- und forstwirtschaftlichem Verkehr) Quelle: Umweltbundesamt, Nationale Trendtabellen für die deutsche Berichterstattung atmosphärischer Emissionen seit 1990, Emissionsentwicklung 1990 bis 2016 (Endstand 02/2018)



S-VELD - Gesamtziel

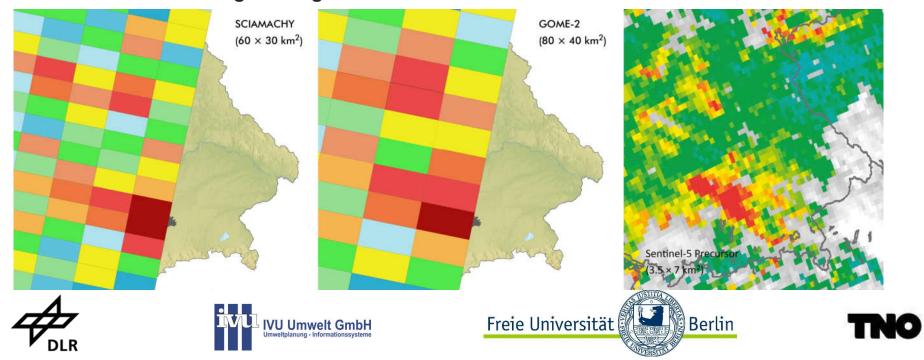
- Besseres Verständnis der verkehrsbedingten Schadstoffemissionen in Deutschland auf Grundlage neuester Sentinel-Satellitendaten
 - ➤ Planungsgrundlage und Entscheidungshilfe für Behörden
- Die Copernicus Sentinel Instrumente liefern tägliche NO₂ and Feinstaub Informationen in einer noch nie da gewesenen räumlichen Auflösung
- Nutzung von Sentineldaten in Kombination mit Emissions- und Luftqualitäts-Modellierung

S-VELD Projekt

- Projekt im Rahmen des 3. mFUND Förderaufrufs
- Themenbereich: Datenbasierte Anwendungen im Bereich "Fernerkundung/Satelliten"
- Laufzeit: August 2018 Juli 2021

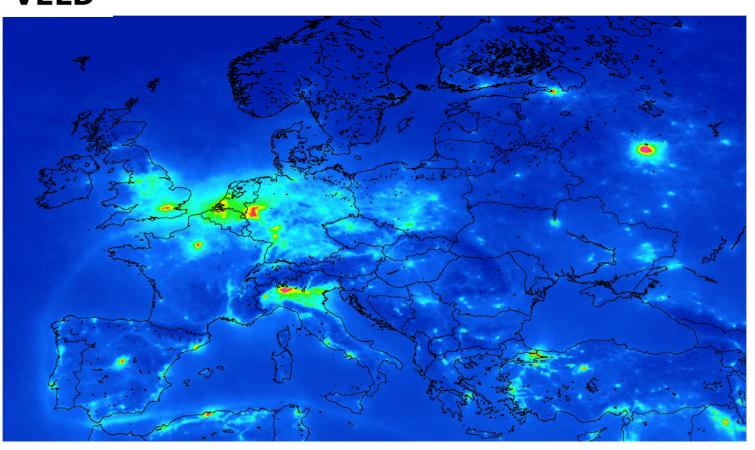
Partner

- Institut f
 ür Methodik der Fernerkundung (IMF), DLR, Oberpfaffenhofen
- Deutsches Fernerkundungsdatenzentrum (DFD), DLR, Oberpfaffenhofen
- Institut für Meteorologie, Freie Universität Berlin (FU-B), Berlin
- TNO, Climate Air and Sustainability Unit, Utrecht, Niederlande
- IVU Umwelt GmbH, Freiburg



Copernicus Sentinel-5 Precursor (S-5P)

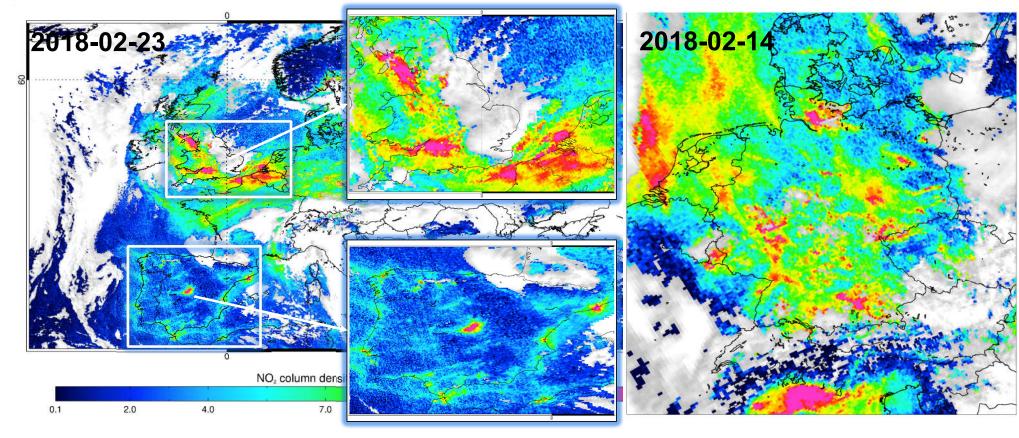
- Sentinel-5P: gestarted im Okt. 2017, operationelle Daten seit Juli 2018
- Erfasst wichtige Spurengase, Aerosole und Wolkeninformationen
- Auflösung ~3,5 x 5,5 km²


Auflösung im Vergleich zu den Vorläufer-Instrumenten

Troposphärisches NO₂ aus Sentinel-5P

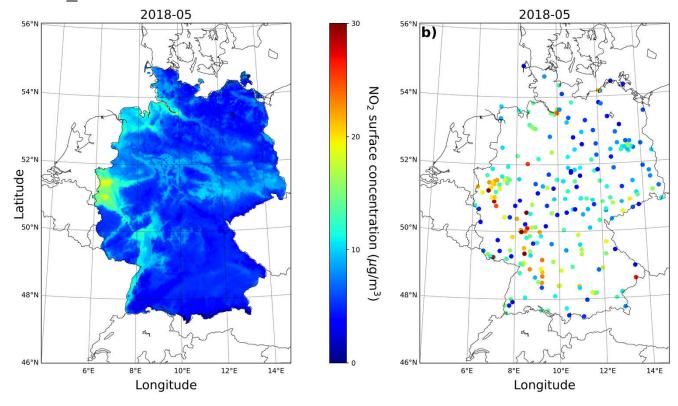
Europa

2018 Jahresmittel


NO₂ column density [10¹⁵ molec/cm²]

0.0

S-VELD Troposphärisches NO₂ aus Sentinel-5P



- Monatliche Bodenkonzentrationen von NO₂ mit 2 km Auflösung
- Nichtlineares Regressionsmodell basierend auf S-5P NO₂ Daten und meteorologischen Daten (Grenzschichthöhe, Windgeschwindigkeit, Temperatur) aus COSMO-D2 (DWD)
- Verifikation der Ergebnisse mit in-situ Beobachtungen

Bodennahes NO₂ aus S-5P NO₂ Daten (Mai 2018)

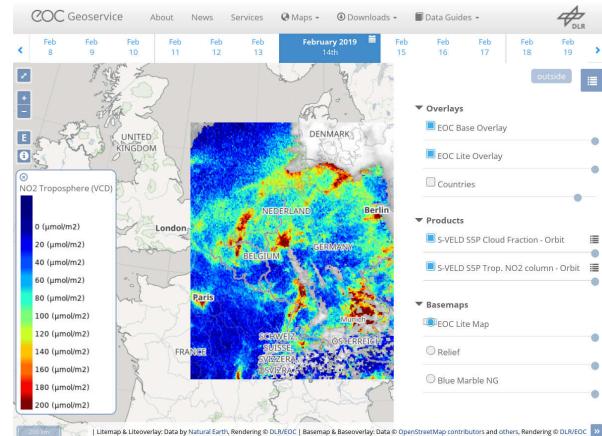
Bodennahe Feinstaub-Konzentrationen

- Jährliche und saisonale Bodenkonzentrationen von Feinstaub (PM 2.5 & PM 10) basierend auf Satellitendaten mit Auflösung auf km-Skala
- Ableitung der Konzentrationen mit Hilfe von Feuchte und Grenzschichthöhe
- Korrektur und Verifikation der Ergebnisse mit in-situ Beobachtungen

PM 2.5 aus MODIS Aerosol-Daten (2018)

 $9 \mu g/m^3$

EOWEB GeoPortal - Geodatendienst S-VELD NO₂ und Feinstaub Produkte

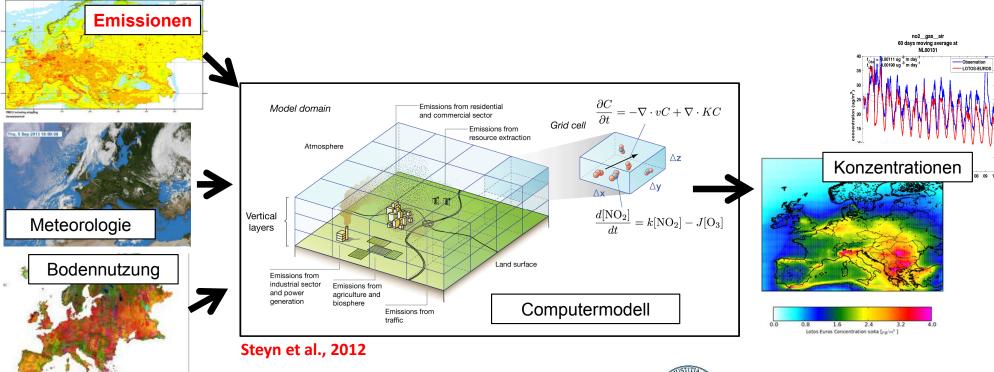


Tägliche und Monatmittel NO₂ und Feinstaub Karten & Daten

Interoperable
Datenermittlung,
Visualisierung und
Download

Metadata in mCLOUD

https://geoservice.dlr.de/web/maps/de:sveld:orbit


https://geoservice.dlr.de/web/maps/de:sveld:monthly

Von Sentinel-5P Daten zu Emissionen

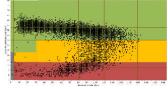
Chemie-Transport-Modelle verbinden Emissionen und Konzentrationen

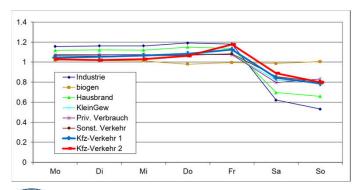
Bottom-up Emissionsmodellierung Kfz-Verkehr FUND

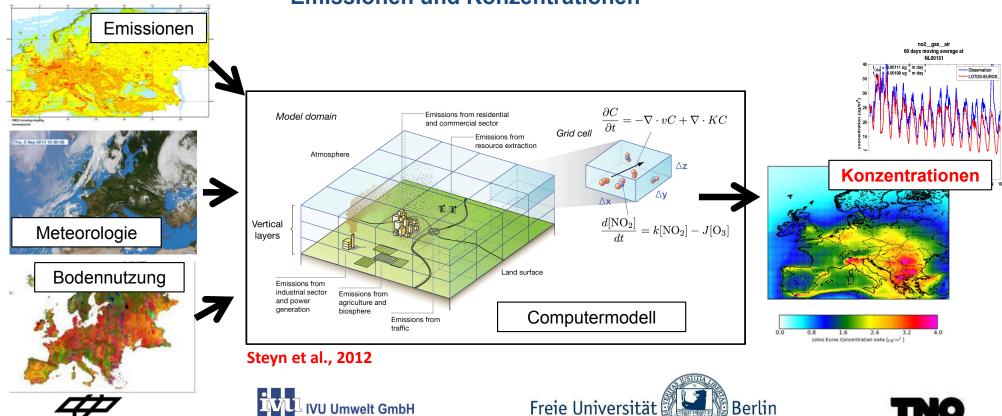
Eingangsdaten

- Straßennetze & Straßeneigenschaften
- Kfz-Belastungen & Zusammensetzung auf den Straßen (Flotte), z. B.:
 - Kfz-Arten (Pkw, Lkw, ...), Antriebsart (Benzin, Diesel, ...), Euro-Norm
- Verkehrsqualität (Level of Service)

Geplantes Vorgehen


- Grundlage Basisemissionen aus GRETA (UBA)
- Verwendung Verkehrszähldaten automatischer Dauerzählstellen (BMVI/BASt)
- Emissionsmodellierung stündlich (ausgewählte Hauptachsen)
- Ableitung differenzierter Abbildung der zeitlichen Variabilität
 - räumlich (Orographie, Meteorologie)
 - Wochentag/Wochenende
 - Saisonal
 - Kaltstart
- ggf. teilweise Ergänzung durch MDM-Daten und Mautdaten (Lkw-Flotte)
- Emissionsfaktoren (voraussichtlich HBEFA 4.1)





Von Sentinel-5P Daten zu Emissionen

Chemie-Transport-Modelle verbinden Emissionen und Konzentrationen

Top-Down Emissionsanalyse

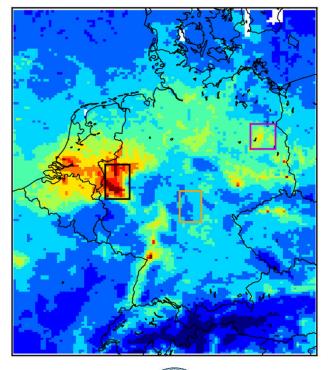
Quantifizierung der Verkehrsemissionen durch inverse Modellierung

	Szenarioanalysen	Datenassimilation
Model	POLYPHEMUS	LOTOS-EUROS
Institut	DLR	FUB/TNO
Technik	Localized EnKF (Offline)	EnKF (Online)
Meteorologie	DWD - COSMO	DWD - COSMO
A-Priori Emissionen (bottom-up)	S-VELD	S-VELD

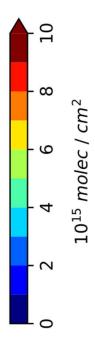
Kombination zweier Modelle ermöglicht Aussagen zur Variabilität und Robustheit der Ergebnisse.



Erste Sentinel-5P - Modell Vergleiche

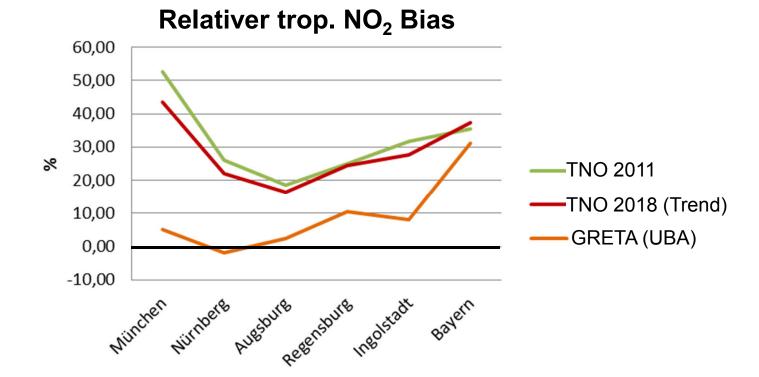

Troposphärisches NO₂ Nov. – Dez. 2018

Sentinel-5P



IVU Umwelt GmbH
Umweltplanung - Informationssysteme

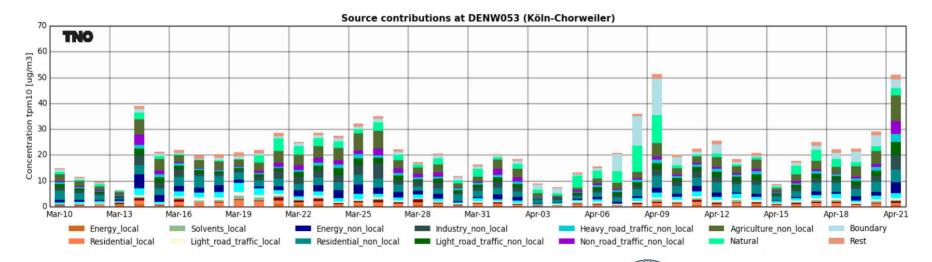
LOTOS-EUROS Model


Erste Sentinel-5P - Modell Vergleiche

Einfluss der Emissionsdaten auf die Modellabweichung

Polyphemus Modell

Bayrische Städte Juli 2018


Analyse der Verkehrsemissionen und ihr Beitrag zur Luftbelastung in Deutschland

Beitrag der Verkehrsemissionen zur Luftbelastung

- Berichte
- Karten, Zeitreihen (2018-2020)
- Was haben wir gelernt? Genauigkeit, Lücken, etc

Diskussion der Projektergebnisse mit S-VELD Beratungsgremium (UBA, BASt, DWD, Umwelt Landesämter)

