Lbl4IR – Line-by-line for InfraRed
(Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 112, pp. 1010-1025, 2011)
Abstract
Rational functions are frequently used as efficient yet accurate numerical approximations for real and complex valued functions.
For the complex error function w(x+iy), whose real part is the Voigt function K(x,y), code optimizations of rational approximations are investigated.
An assessment of requirements for atmospheric radiative transfer modeling indicates a y range over many orders of magnitude and accuracy better than 10^{-4}.
Following a brief survey of complex error function algorithms in general and rational function approximations in particular the problems associated with subdivisions of the x, y plane (i.e., conditional branches in the code) are discussed and practical aspects of Fortran and Python implementations are considered.
Benchmark tests of a variety of algorithms demonstrate that programming language, compiler choice, and implementation details influence computational speed and there is no unique ranking of algorithms.
A new implementation, based on subdivision of the upper half-plane in only two regions, combining Weideman's rational approximation for small |x|+y < 15 and Humlicek's rational approximation otherwise is shown to be efficient and accurate for all x, y.
(Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 187, pp. 44-53, 2017)
Abstract
The increasing quality of atmospheric spectroscopy observations has indicated the limitations of the Voigt profile routinely used for line-by-line modeling, and physical processes beyond pressure and Doppler broadening have to be considered. The speed-dependent Voigt (SDV) profile can be readily computed as the difference of the real part of two complex error functions (i.e. Voigt functions). Using a highly accurate code as a reference, various implementations of the SDV function based on Humlicek's rational approximations are examined for typical speed dependences of pressure broadening and the range of wavenumber distances and Lorentz to Doppler width ratios encountered in infrared applications. Neither of these implementations appears to be optimal, and a new algorithm based on a combination of the Humlicek (1982) and Weideman (1994) rational approximations is suggested.
Supplement Material
- demo.py (called mmc1.txt in the JQSRT supplement)
- A (I)Python interactive session demonstrating the use of the humlicek, weideman, and sdv modules and how to generate the contour plots.
- sdv.py (called mmc4.txt in the JQSRT supplement)
- The 'main functions' of this module, sdvProfile and voigtProfile, evaluate the corresponding profiles (normalized to one) for given pressure & temperature, and line position & widths.
Further functions defined here provide implementations of the SDV function based on various codes (and combinations therof) for the complex error function.
- humlicek.py (called mmc2.txt in the JQSRT supplement)
- Various implementations of Humlicek's cpf12 and w4 rational approximations
- weideman.py (called mmc5.txt in the JQSRT supplement)
- The rational approximations with N=24 and N=32 terms and the Humlicek-Weideman combinations.
- ir.py (called mmc3.txt in the JQSRT supplement)
- Mathematical and physical constants
Py4CAtS – Python for Computational ATmospheric Spectroscopy
Abstract
Py4CAtS is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules (Numpy/Scipy) for highly optimized array-processing.
The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity.
Documentation
- Computational Aspects of Speed-dependent Voigt Profiles JQSRT, Vol. 187, pp. 44-53, 2017
- Optimized Implementations of Rational Approximations for the Voigt and Complex Error Function
JQSRT, Vol. 112(6), pp. 110-125, 2011
- GARLIC --- A General Purpose Atmospheric Radiative Transfer Line-by-Line Infrared-Microwave Code: Implementation and Evaluation;
JQSRT, Vol. 127, pp. 29-50, 2014
- The Voigt and complex error function: A comparison of computational methods
JQSRT, Vol. 48, pp. 743-762, 1992
- J.Humlicek: An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives; JQSRT, Vol. 21, 309-313, 1979
- J.Humlicek: Optimized computation of the Voigt and complex probability function; JQSRT, Vol. 27, 437-444, 1982
- J.A.C. Weideman: Computation of the Complex Error Function; SIAM-J. Num. Anal., Vol. 31, 1497-1518, 1992
What's new?
- October 2016
- Initial page setup
© fgs (+49-8153-28-1234)
Fri Aug 05, 2016; 13:49